当前位置:主页 > 生活经验 > 正文

怎么判断收敛还是发散

第一个其实就是正项的等比数列的和,公比小于1,是收敛的第二个项的极限是∞,必然不收敛拓展资料:简单的说有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散例如:f(x)=1x 当x趋于。怎么判断收敛还是发散?更多详情请大家跟着小编一起来看看吧!

怎么判断收敛还是发散(1)

怎么判断收敛还是发散(1)

第一个其实就是正项的等比数列的和,公比小于1,是收敛的。

第二个项的极限是∞,必然不收敛。

拓展资料:

简单的说

有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

例如:f(x)=1x 当x趋于无穷是极限为0,所以收敛。

f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{ }收敛于a,那么它的任一子数列也收敛于a。

发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。

然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。

怎么判断收敛还是发散(2)

怎么判断收敛还是发散(2)

简单来说,有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。例如:f(x)=1x,当x趋于无穷是极限为0,所以收敛。f(x)=x,当x趋于无穷是极限为无穷,即没有极限,所以发散。

数列发散和数列收敛是相对的。收敛的意思是这样的:当数列an满足n→无穷,an→一定值。严格定义用到了ε-N语言,如果一个数列不满足这个条件,就是发散。

怎么判断收敛还是发散(3)

怎么判断收敛还是发散(3)

收敛与发散判断方法简单来说就是有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

收敛与发散的判断其实简单来说就是看极限存不存在,当n无穷大时,判断Xn是否是常数,是常数则收敛,加减的时候,把高阶的无穷小直接舍去,乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来代。

判断函数和数列是否收敛或者发散:

1、设数列{Xn},如果存在常数a,对于任意给定的正数q(无论多小),总存在正整数N,使得n>N时,恒有|Xn-a|

2、求数列的极限,如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的﹔如果找不到实数a,这个数列就是发散的。看n趋向无穷大时,Xn是否趋向一个常数,可是有时Xn比较复杂,并不好观察。这种是最常用的判别法是单调有界既收敛。

3、加减的时候,把高阶的无穷小直接舍去如1+1n,用1来代替乘除的时候,用比较简单的等价无穷小来代替原来复杂的无穷小来如1n*sin(1n)用1n^2来代替。

4、收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

怎么判断收敛还是发散(4)

怎么判断收敛还是发散(4)

发散和收敛判断方法是:如果数列项数n趋于无穷时,数列的极限能一直趋近于实数a,那么这个数列就是收敛的;如果找不到实数a,这个数列就是发散的。

收敛数列的极限是唯一的,且该数列一定有界,还有保号性,与子数列的关系一致。不符合以上任何一个条件的数列是发散数列。另外还有达朗贝尔收敛准则,柯西收敛准则,根式判敛法等判断收敛性。

怎么判断收敛还是发散(5)

怎么判断收敛还是发散(5)

第一个其实就是正项的等比数列的和,公比小于1,是收敛的。

第二个项的极限是∞,必然不收敛。

拓展资料:

简单的说

有极限(极限不为无穷)就是收敛,没有极限(极限为无穷)就是发散。

例如:f(x)=1x 当x趋于无穷是极限为0,所以收敛。

f(x)= x 当x趋于无穷是极限为无穷,即没有极限,所以发散。

收敛数列与其子数列间的关系

子数列也是收敛数列且极限为a恒有|Xn|<M

若已知一个子数列发散,或有两个子数列收敛于不同的极限值,可断定原数列是发散的。

如果数列{ }收敛于a,那么它的任一子数列也收敛于a。

发散级数指不收敛的级数。一个数项级数如果不收敛,就称为发散,此级数称为发散级数。一个函数项级数如果在(各项的定义域内)某点不收敛,就称在此点发散,此点称为该级数的发散点。按照通常级数收敛与发散的定义,发散级数是没有意义的。

然而为了实际的需要,可以确立一些法则,对某些发散级数求它们的“和”,或者说某个发散级数在特定的极限过程中,逐渐逼近某个数。但是在实际的数学研究以及物理等其它学科的应用中,常常需要对发散级数进行运算,于是数学家们就给发散级数定义了各种不同的“和”,比如Cesàro和,Abel和,Euler和等,使得对收敛级数求得的这些和仍然不变,而对某些发散级数,这种和仍然存在。

猜你还喜欢的

Copyright © 2022 读周刊 All Rights Reserved
声明:本站部分内容来源于网络,如涉及侵权,请与我们联系,请发邮件"duzhoukan@foxmail.com"进行处理,谢谢合作!
渝ICP备2021012918号-4|